

Initial Summary of ESSAAC-17 Meeting Discussion

Feb. 18-19, 2004

Executive Secretary Notes Reviewed withCommittee at End of Meeting

Wednesday morning discussion

- Wanted: A New Vision for a New Era
- With appeal equivalent to the Exploration Vision
- 15 years ago, we started with Earth System Science, then formulated EOS. Because we got to this stage, it is time to formulate a new vision
 - Again, science-driven
 - This time, information science should play a key role
- The next vision is not a measurement system, but a nervous system for the planet
 - Recent work from the bottom up supports this, e.g., what is emerging is the capability for scientists can work at the speed of thought--distance is seemingly eliminated.
 - But we lack a top-down articulation
- Discuss vision for ESE at next meeting

GRID Lessons (1)

- Leaders in grid implementation are discipline scientists not computer scientists. Results come thru science-driven partnerships with the technology community. E.g., BIRN and ORION are drivers of the OptIPuter.
- The technology is changing faster than the cycle of NRAsproposals-grants.
- These people are generous with their time, and will help us
- There are not any real barriers here, as demonstrated by these diverse examples
- Thus, we should be asking what kind of science can be enabled by these technologies?
- Need a coalition of early adopters, sponsored thru such means as REASoN

GRID Lessons (2)

- Data grid effort in Europe is quite a bit ahead of US.
 Dedicated optical pipes already in use in Europe and Japan; we gain by hooking up to them.
- Take advantage of the convergence of e-science and e-business middleware so that science "rides the wave" of commercial investment.
- The successful things we saw today got their science straight first, then sought computing solutions.
- Making the network as predictable as the computer itself is what will be important.

GRID Lessons (3)

- Two differing definitions of grid computing presented today
 - •□1) get info from different places
 - •□2) get access to computing resources
- The domain will support many different services. For example, ask "What is geographic knowledge?"
 - Measurements, but also
 - Processes
 - Data models
 - Maps / visualizations
 - -□Metadata.

This is like music; it provides the underlying infrastructure

 Question: is the burgeoning diversity leading us toward adaptability or standardization? Answer: they are not mutually exclusive.

Jim Gray (Microsoft)

- What makes a successful grid application?
 - Success = wide use.
 - Successful grid app = content + applications
- EOSDIS has lots of data and no apps
- Good example: Terra Server from USGS
- Web services are web pages designed for programs to access, not people.
- Data bases are tough for science because databases do not have good spatial representation.
- Remember: "Computing is free, data is precious".
- "Objectifying science" astronomers don't have common definitions for astronomical objects, nor common units. Being driven to it by this capability. Biology is much harder yet. Does Earth Science?
- Questions:
 - what are implications of having data of commercial or other value?
 - what about systems that change over time, like Earth systems

TRMM De-orbit issue

- Chair of the GEWEX Science Steering Group (Sorooshian) wrote a letter to ESSAAC Chair asking the Committee to look into extending TRMM's mission lifetime.
- NASA plans to de-orbit based on fuel on board and the requirement for controlled de-orbit given size of pieces that would survive uncontrolled de-orbit
- ESSAAC believes that NASA is following a responsible course

Thursday AM Data Management Discussion

- Information on user characterization in response to ESSAAC request last meeting is very enlightening; ESSAAC/ESISS thanks NASA for its response
- It could be that provision of key data services would be transformational in terms of ease of use of ESE data, and thus support for ESE in the community.
- There is research in system integration that must be done to determine what kinds of data access & manipulation are accommodated, and which are not yet accommodated but could be with development and infusion of key technologies

Actions:

- Chair asks ESTO to report at next ESSAAC meeting on ESEwide technology investments in IS
- Chair tasks Bernard Minster, Tom Younk, Martha Maiden to talk to key members of the community and report on a plan for future prototyping efforts

ESISS to Work w/NASA on DIMP Development

- DIMP: Aaaaaccckk! Need a new name.
- Replace function basis with services basis and/or mandatory principles
- Need a methodology / decision making process that allows new technology components to connect to existing systems -- balancing stability & innovation
 - Roadmaps are not useful in this rapidly evolving arena
 - Must plan for smooth response to disruptive technological change
- Partnerships must be addressed earlier, especially with private sector
 - Action to J. Dangermond to draft a couple of paragraphs on COTS vs custom development
- Rapid prototyping as the development path
- There should be a companion to this that addresses computational modeling (in Research Plan?)
 - ESISS to assure this doesn't get lost

Summary of Topics Requested for Next ESSAAC Meeting

- Discussion of ESE Vision
- Progress on (retitled) Data & Information Management
 Plan
- Approach to future info systems prototyping efforts
- ESE-wide investments in Information science & technology
- Science presentation on computational modeling priorities
- Briefing on Education progress
- Seek dates in July for next meeting

